
Some nonunitary, indecomposable representations of the Euclidean algebra 

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys. A: Math. Theor. 43 085204

(http://iopscience.iop.org/1751-8121/43/8/085204)

Download details:

IP Address: 171.66.16.158

The article was downloaded on 03/06/2010 at 08:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/43/8
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 43 (2010) 085204 (13pp) doi:10.1088/1751-8113/43/8/085204

Some nonunitary, indecomposable representations
of the Euclidean algebra e(3)

Andrew Douglas1 and Hubert de Guise2

1 Department of Mathematics, New York City College of Technology, City University
of New York, 300 Jay Street, Brooklyn, NY 11201, USA
2 Department of Physics, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1,
Canada

E-mail: adouglas@citytech.cuny.edu

Received 7 October 2009, in final form 11 January 2010
Published 4 February 2010
Online at stacks.iop.org/JPhysA/43/085204

Abstract
The Euclidean group E(3) is the noncompact, semidirect product group
E(3) ∼= R

3
� SO(3). It is the Lie group of orientation-preserving isometries

of three-dimensional Euclidean space. The Euclidean algebra e(3) is the
complexification of the Lie algebra of E(3). We construct three distinct families
of finite-dimensional, nonunitary representations of e(3) and show that each
representation is indecomposable. The representations of the first family are
explicitly realized as subspaces of the polynomial ring F[X, Y,Z] with the
action of e(3) given by differential operators. The other families are constructed
via duals and tensor products of the representations within the first family.
We describe subrepresentations, quotients and duals of these indecomposable
representations.

PACS numbers: 02.10.Ud, 02.20.Bb, 02.20.Sv

1. Introduction

The Euclidean group E(3) is the noncompact, semidirect product group E(3) ∼= R
3
�SO(3).

It is the Lie group of orientation-preserving isometries of three-dimensional Euclidean space.
The history of this group is intertwined with the early history of physics and Euclidean
geometry and dates back well before the concept of a group was even invented. Some of the
more remarkable geometrical features associated with subgroups of E(3), e.g. the existence
of Platonic solids, have been the subject of human fascination since antiquity.

The representations of E(3) play an important role in the representation theory of the
Poincaré group [1]. E(3) appears in the study of crystallographic groups of physics, which
are subgroups of E(3). The group has also been studied outside of physics or mathematics:
it is used for instance in the mathematical description of robotic manipulations [2]. A lesser
known application is due to Fock [3], who showed that E(3) is the symmetry group of the
zero-energy solutions of the Schrödinger equation for the hydrogen atom.
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The Euclidean algebra e(3) is the complexification of the Lie algebra of E(3). Although
irreducible representations of e(3) have been studied extensively (see for example [4–7]), little
is known about its finite-dimensional, indecomposable representations.

We remind the reader that a representation V is irreducible if it has no subrepresentations
other than {0}, and V. It is completely reducible if it is isomorphic to a direct sum of irreducible
representations. It is indecomposable if it is not isomorphic to a direct sum of two nonzero
subrepresentations ([8], p 5).

In this paper, we construct three infinite families of finite-dimensional indecomposable
e(3) representations. The representations of the first family are explicitly realized as subspaces
of the polynomial ring F[X, Y,Z] with the action of e(3) given by differential operators. The
other families are constructed via duals and tensor products of the representations within the
first family. All nontrivial examples in each family are nonunitary.

The organization of the paper is as follows. In section 2, we describe the Lie group E(3)

and the complexification of its Lie algebra e(3). Section 3 records results about sl(2, C),
which is a subalgebra of e(3), and its representations that will be used in following sections. In
section 4, we construct three families of representations of e(3) and prove they are indecom-
posable. We also describe the subrepresentations, quotients and duals of these representations.

2. The Euclidean group E(3) and the Euclidean algebra e(3)

The Euclidean group E(3) may be realized as a subgroup of GL(4, R):

E(3) ∼=

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

x1

R x2

x3

0 0 0 1

⎞
⎟⎟⎠ |R ∈ SO(3), and x1, x2, x3 ∈ R

⎫⎪⎪⎬
⎪⎪⎭ , (1)

where SO(3) is the special orthogonal group of 3 × 3 real matrices X with the determinant
one such that Xtr = X−1 (Xtr is the transpose of X). It can then be shown (see [9]) that the
Lie algebra of E(3) is the space of all 4 × 4 real matrices of the form⎛

⎜⎜⎝
x1

R x2

x3

0 0 0 0

⎞
⎟⎟⎠ , (2)

where R ∈ so(3) and x1, x2, x3 ∈ R: so(3) is the special orthogonal algebra consisting of
3 × 3 real matrices X such that Xtr = −X.

The Euclidean algebra e(3) is the complexification of the Lie algebra of E(3). It may be
described abstractly with basis Jz, J+, J−, Pz, P+, P−, and commutation relations

[Jz, J±] = ±2J±, [J+, J−] = Jz (3)

[Jz, P±] = ±2P±, (4)
[J±, Pz] = −P±, [Jz, Pz] = 0 (5)[
Pi, Pj

] = 0, (6)
[J+, P+] = [J−, P−] = 0, [J−, P+] = [J+, P−] = −2Pz. (7)

Note that sl(2, C) ∼= so(3)C, where so(3)C is the complexification of so(3). Further,
sl(2, C) and e(2) are subalgebras of e(3). Specifically, sl(2, C) ∼= 〈Jz, J+, J−〉 and e(2) ∼=
〈Jz, P+, P−〉.
2
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3. The Lie algebra sl(2, C) and its irreducible representations

The special linear algebra sl(2, C) is the Lie algebra of traceless 2 × 2 matrices with complex
entries, and Lie bracket given by the commutator. It may be described abstractly with basis
Jz, J+, J− and commutation relations

[Jz, J+] = 2J+, [Jz, J−] = −2J−, [J+, J−] = Jz. (8)

The finite-dimensional, irreducible sl(2, C)-modules play a central role in our construction of
finite-dimensional, indecomposable representation of e(3) below. Thus, for completeness and
to establish notation, we briefly review the representation theory of sl(2, C).

Following ([10], exercise 7.4), the finite-dimensional, irreducible sl(2, C)-modules may
be realized as subspaces of the polynomial ring F[X, Y ], and the sl(2, C)-action given by
differential operators. Specifically, for each natural number n, there is an irreducible (n + 1)-
dimensional sl(2, C)-module denoted by Mn[X, Y ] with basis,

{Xn,Xn−1Y,Xn−2Y 2, ..., XY n−1, Y n}, (9)

consisting of the n + 1 monomials of degree n. The action of sl(2, C) on Mn[X, Y ] is given
by the differential operators:

Jz = X
∂

∂X
− Y

∂

∂Y
, J+ = X

∂

∂Y
, J− = Y

∂

∂X
. (10)

The category of finite-dimensional sl(2, C)-modules is semisimple; hence if V and W

are finite-dimensional sl(2, C)-modules, V ⊗ W is completely reducible. The tensor product
decomposition of irreducible sl(2, C)-modules is given by the Clebsch–Gordan theorem ([9],
theorem D.1).

Theorem 1. Let n � m; then

Mm[X, Y ] ⊗ Mn[X, Y ] ∼=
n⊕

i=0

Mm+n−2i[X, Y ]. (11)

Remark 1. Since sl(2, C) is a subalgebra of e(3), if V is a finite-dimensional e(3)-
module, then V, when restricted to sl(2, C), decomposes into irreducible sl(2, C)-modules
V ∼=sl(2,C)

⊕
m Mm[X, Y ].

4. Finite-dimensional, indecomposable e(3)-modules

We now construct three families of finite-dimensional representations of e(3). For each
n,m ∈ Z�0 with n � m, we construct two representations: a raising string denoted by
R[n,m] and a lowering string L[n,m]. The raising string representations are constructed
explicitly as subspaces of the polynomial ring F[X, Y,Z] with the action of e(3) given
by differential operators. The lowering string representations are the duals of the raising
string representations. The third distinct family of indecomposable representations is created
by taking the tensor product of a raising with a lowering string. We call members of
the third family parallelogram representations. We show that each family consists of
indecomposable representations and consider subrepresentations, quotients and duals. These
families generalize to e(3) the similar ideas presented for e(2) in [11], and [12].

3
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4.1. Raising string representations

Fix natural numbers n and m with n � m, and consider the (n+1)(m+1)-dimensional subspace
of the polynomial ring F[X, Y,Z]:

R[n,m] ≡
n⊕

j=0

Mm−n+2j [X, Y ]Zn−j , (12)

where Mm−n+2j [X, Y ]Zn−j = {p(X, Y )Zn−j : p(X, Y ) ∈ Mm−n+2j [X, Y ]}. We may define
an action of e(3) in terms of differential operators on R[n,m]; in addition to the explicit action
of equation (10), we have

Pz = −XY
∂

∂Z
, P+ = X2 ∂

∂Z
, P− = Y 2 ∂

∂Z
. (13)

Observe that

P · Mm−n+2j [X, Y ]Zn−j ⊆ Mm−n+2j+2[X, Y ]Zn−j−1 (14)

for 0 � j � n − 1 and

P · Mm+n[X, Y ] = 0, where P ∈ {Pz, P+, P−}. (15)

In a straightforward manner one can now check that the commutations relations of e(3) are
respected by the action described in equations (10) and (13) on the vector space R[n,m]
given in equation (12), so that we have defined an e(3)-representation. Indeed, P decreases
the degree in Z but increases the degree in X and Y and so raises the dimensionality of the
sl(2, C)-module. Thus,

Definition 1. For all n,m ∈ Z�0, where n � m, the (n + 1)(m + 1)-dimensional
e(3)-representation R[n,m] described in equations (12), (10) and (13) is a raising string
representation.

Proposition 1. R[n,m] is indecomposable.

Proof. To establish indecomposability, it suffices to show that any nonzero element of R[n,m]
generates the subrepresentation Mm+n[X, Y ].

Let x = ∑n
j=0 αjvj , where αj is a scalar, vj ∈ Mm−n+2j [X, Y ]Zn−j and vj 	= 0 be an

arbitrary nonzero element of R[n,m]. Let l be minimal among {0, 1, 2, ..., n} such that αl 	= 0.
Then, (Pz)

n−l · x is a nonzero element of Mm+n[X, Y ]. Since Mm+n[X, Y ] is an irreducible
sl(2, C)-module, any nonzero element of Mm+n[X, Y ] generates all of Mm+n[X, Y ]. �

Proposition 2. V is a subrepresentation of R[n,m] if and only if V ∼= R[n − t, m + t], such
that t � n.

Proof. Suppose V ∼= R[n − t, m + t] such that 0 � t � n. Then, since

R[n,m] ∼=sl(2,C)

n⊕
j=0

Mm−n+2j [X, Y ]Zn−j (16)

∼=sl(2,C)

t−1⊕
j=0

Mm−n+2j [X, Y ]Zn−j

⊕ Mm−n+2t [X, Y ]Zn−t ⊕ · · · ⊕ Mm+n[X, Y ] (17)

∼=sl(2,C)

t−1⊕
j=0

Mm−n+2j [X, Y ]Zn−j ⊕ R[n − t, m + t], (18)

4
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and P · Mm−n+2j [X, Y ]Zn−j ⊆ Mm−n+2j+2[X, Y ]Zn−j−1 for P ∈ {Pz, P−, P+}, it is clear that
R[n − t, m + t] is a subrepresentation of R[n,m].

Conversely, suppose that V is a subrepresentation of R[n,m]. Let {bi}i be a basis of V.
Each bi may be written bi = ∑n

j=0 αi,j vi,j , where vi,j ∈ Mm−n+2j [X, Y ]Zn−j , vi,j 	= 0 and the
αi,j are scalars. There is a minimal t � n such that αi,t 	= 0 for some i (perhaps more than one
i). Then V ⊆ R[n−t, m+t], considering P ·Mm−n+2j [X, Y ]Zn−j ⊆ Mm−n+2j+2[X, Y ]Zn−j−1.

Let bs be a basis vector such that αs,t 	= 0. Then we may write bs = ∑n
j=t αs,t vs,j . Then

(Pz)
N · bs has a nonzero component of Mm−n+2(t+N)[X, Y ]Zn−(t+N), where N = 0, ..., n − t ,

and does not have a component of Mk[X, Y ]Zm−k+j for k < m − n + 2(t + N). In particular,
(Pz)

n−t · bs is a nonzero element of Mm+n[X, Y ], and hence generates all of Mm+n[X, Y ].
Then, a linear combination of elements in Mm+n[X, Y ] together with (Pz)

n−t−1 · bs generate
a nonzero element of Mm+n−2[X, Y ]Z, and hence all of Mm+n−2[X, Y ]Z. Continuing in this
manner we generate all of R[n − t, m + t], and thus V ∼= R[n − t, m + t]. �

Proposition 2 implies the following proposition:

Proposition 3. R[n,m] is irreducible if and only if n = 0.

For 1 � t � n, consider the sl(2, C)-decomposition of R[t − 1,m − n + t − 1], R[n,m]
and R[n − t, m + t]:

R[t − 1,m − n + t − 1] ∼=sl(2,C)

t−1⊕
j=0

Mm−n+2j [X, Y ]Zn−j , (19)

R[n,m] ∼=sl(2,C)

t−1⊕
j=0

Mm−n+2j [X, Y ]Zn−j ⊕

n⊕
j=t

Mm−n+2j [X, Y ]Zn−j , (20)

R[n − t, m + t] ∼=sl(2,C)

n⊕
j=t

Mm−n+2j [X, Y ]Zn−j . (21)

From this it is clear that the canonical embedding of R[t − 1,m − n + t − 1] into R[n,m]
R[n−t,m+t] is

one-to-one, and onto (and commutes with the action of e(3)), giving us the next proposition.

Proposition 4. Let R[n − t, m + t] for 1 � t � n be a subrepresentation of R[n,m]; then,

R[n,m]

R[n − t, m + t]
∼= R[t − 1,m − n + t − 1]. (22)

The final result of the subsection follows from a consideration of the sl(2, C)-
decomposition of R[n,m] and R[k, l]. The result implies that the family of raising string
representations is indeed infinite.

Proposition 5. R[n,m] ∼= R[k, l] if and only if n = k and m = l.

Figure 1 illustrates the action of P+, Pz and P− (up to scalar multiple) in R[3, 3] ∼=sl(2,C)

M0[X, Y ]Z3 ⊕M2[X, Y ]Z2 ⊕M4[X, Y ]Z⊕M6[X, Y ]. Vertices on the same vertical line form
a basis of an sl(2, C)-irrep. Vertices of the same horizontal height have the same Jz-weight.

5
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Figure 1. The action of P+, Pz and P− (up to scalar multiple) in R[3, 3].

4.2. Lowering string representations

Let V be a finite-dimensional e(3)-module. Then the dual or contragradient vector space V ∗

is also an e(3)-module with action given by ([10], p 26)

(x · f )(v) = −f (x · v), where f ∈ V ∗, v ∈ V and x ∈ e(3). (23)

Definition 2. For each n,m ∈ Z�0 and n � m, a lowering string representation, denoted by
L[n,m], is the dual of the raising string representation R[n,m]. That is, L[n,m] ≡ R[n,m]∗.

We will now describe the representation L[n,m]. Define a basis {fj,i}j=0,...,n;i=0,...,m−n+2j

of L[n,m] = R[n,m]∗, where fj,i ∈ R[n,m]∗ is given by

fa,b(X
m−n+2j−iY iZn−j ) =

{
1 : a = j, b = i

0 : otherwise.
(24)

The action of e(3) on the basis is given by

Jz · fj,i = −(m − n + 2j − 2i)fj,i

J+ · fj,i = −(i + 1)fj,i+1 (25)

J− · fj,i = −(m − n + 2j − i + 1)fj,i−1

Pz · fj,i = (n − j + 1)fj−1,i−1

P+ · fj,i = −(n − j + 1)fj−1,i (26)

P− · fj,i = −(n − j + 1)fj−1,i−2.

Fixing j , 0 � j � n, define Lj [n,m] ≡ 〈fj,i〉i=0,...,m−n+2j . Then,

Lj [n,m] ∼=sl(2,C) Mm−n+2j [X, Y ] (27)

and

L[n,m] ∼=sl(2,C)

n⊕
j=0

Lj [n,m]. (28)

In addition,

P · Lj [n,m] ⊆ Lj−1[n,m], (29)

6
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where P ∈ {Pz, P+, P−} for 1 � j � n and

P · L0[n,m] = 0, where P ∈ {Pz, P+, P−}. (30)

The proof of the indecomposability of L[n,m] and proofs for the results involving
subrepresentations and quotients of lowering strings follow as for raising string representations
and hence are omitted.

Proposition 6.

(a) L[n,m] is indecomposable.
(b) V is a subrepresentation of L[n,m] if and only if V ∼= L[n−t, m−t], such that 0 � t � n.
(c) L[n,m] is irreducible if and only if n = 0.
(d) L[n,m] ∼= L[k, l] if and only if n = k and m = l.
(e) The quotient e(3)-module L[n,m]

L[n−t,m−t] is isomorphic to L[t−1,m+n−(t−1)] for 1 � t � n.

The final proposition of the subsection establishes that raising and lowering strings are
distinct families of indecomposable representations (except in the trivial case described below).

Proposition 7. R[n,m] ∼= L[k, l] if and only if n = k = 0 and m = l.

Proof. If n = k = 0 and m = l, then it is clear that R[0,m] ∼= L[0,m], since in this case
the operators Pz, P+ and P− act trivially on R[0,m] and L[0,m], and, as sl(2, C)-modules,
R[0,m] ∼=sl(2,C) L[0,m] ∼=sl(2,C) Mm[X, Y ].

Suppose that R[n,m] ∼= L[k, l] with the bijective intertwining operator φ : R[n,m] −→
L[k, l]. As sl(2, C)-modules:

L[k, l] ∼=sl(2,C) R[n,m] ∼=sl(2,C)

n⊕
j=0

Mn+m−2j [X, Y ]. (31)

Thus we have k = n and l = m.
The element Xn+m of R[n,m] is the unique highest weight vector of weight n+m up to

scalar multiple. The element fn,m+n of L[n,m] = L[k, l] is the unique highest weight vector
of weight n+m up to scalar multiple. Further, Xn+m and fn,m+n are of higher weight (up to
scalar multiple) than any other element in their respective module. Hence, there is a nonzero
λ such that

φ(Xn+m) = λfn,m+n. (32)

Thus,

0 = φ(P− · Xn+m) = λP− · fn,m+n, (33)

so that

P− · fn,m+n = 0. (34)

However,

P− · fn,m+n

{ −fn−1,m+n−2 : n 	= 0
0 : n = 0.

(35)

Thus, n = 0. In summary, n = k = 0 and m = l as required. �

Figure 2 illustrates the action of P+, Pz and P− (up to scalar multiple) in L[2, 4] ∼=sl(2,C)

L2[2, 4] ⊕ L1[2, 4] ⊕ L0[2, 4] ∼=sl(2,C) M6[X, Y ] ⊕ M4[X, Y ] ⊕ M2[X, Y ]. Vertices on the
same vertical line form a basis of an sl(2, C)-irrep. Vertices of the same horizontal height
have the same Jz-weight.

7



J. Phys. A: Math. Theor. 43 (2010) 085204 A Douglas and H de Guise

Figure 2. The action of P+, Pz and P− (up to scalar multiple) in L[2, 4].

4.3. Parallelogram representations

The representations within the final family of finite-dimensional representations are formed
from the tensor product of a raising string representation with a lowering string representation.
Specifically, we have the following definition.

Definition 3. For each n,m ∈ Z>0, a parallelogram representation, denoted by P [n,m], is
the tensor product of R[n, n] with L[m,m]. That is, P [n,m] ≡ R[n, n] ⊗ L[m,m].

Remark 2. Let HomC(R[m,m], R[n, n]) be the space of C-linear maps from R[m,m]
to R[n, n]. Then, following ([10], p 27), HomC(R[m,m], R[n, n]) is an e(3)-module with
action ∗ given by

X ∗ φ(v) ≡ X · φ(v) − φ(X · v), (36)

where X ∈ e(3), v ∈ R[m,m] and φ ∈ HomC(R[m,m], R[n, n]). We then have an interesting
realization of P [n,m]:

P [n,m] ∼= R[n, n] ⊗ L[m,m] ∼= R[n, n] ⊗ R[m,m]∗

∼= R[m,m]∗ ⊗ R[n, n]
∼= HomC(R[m,m], R[n, n]). (37)

That is, as an e(3)-module,

P [n,m] ∼= HomC(R[m,m], R[n, n]), (38)

with the special case P [n, n] ∼= EndC(R[n, n]).

The following lemmas and remark will be used to prove that P [n,m] is indecomposable
in theorem 2 below. Note that when we refer to weight vectors below we mean weight vectors
with respect to sl(2, C).

8
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The first lemma, lemma 1, is a generalization of theorem 4.2 in [13] (we describe the
highest weight vectors for Mn[X, Y ] ⊗ Mm[X, Y ] and [13] describes highest weight vectors
in Mn[X, Y ] ⊗ Mn[X, Y ]).

Lemma 1. Let n � m; then the highest weight vector of Mn[X, Y ] ⊗ Mm[X, Y ] of weight
m + n − 2k, where 0 � k � n, is a nonzero scalar multiple of

wm+n−2k =
k∑

i=0

(−1)i
(

k

i

)
Xn−iY i ⊗ Xm−(k−i)Y k−i . (39)

Proof. Any vector w in Mn[X, Y ] ⊗Mm[X, Y ] of weight m + n− 2k, for k � n, has the form

w =
k∑

i=0

aiX
n−iY i ⊗ Xm−(k−i)Y k−i . (40)

For w to be a highest weight vector, we must have J+ · w = 0. Therefore,

J+ · w =
k=0∑
i=0

ai(J+ · Xn−iY i ⊗ Xm−(k−i)Y k−i

+ Xn−iY i ⊗ J+ · Xm−(k−i)Y k−i ), (41)

=
k∑

i=1

ai(iX
n−i+1Y i−1 ⊗ Xm−(k−i)Y k−i )

+
k−1∑
i=0

ai((k − i)Xn−iY i ⊗ Xm−(k−i)+1Y k−i−1) (42)

=
k∑

i=1

ai(iX
n−i+1Y i−1 ⊗ Xm−(k−i)Y k−i )

+
k∑

i=1

ai−1((k − i + 1)Xn−i+1Y i−1 ⊗ Xm−(k−i)Y k−i ) (43)

=
k∑

i=1

(aii + ai−1(k − i + 1))Xn−i+1Y i−1 ⊗ Xm−(k−i)Y k−i (44)

= 0. (45)

Since the simple tensors are linearly independent, we get the relations

aii + ai−1(k − i + 1) = 0 (46)

for 1 � i � k. Hence,

ai = −k − i + 1

i
ai−1, 1 � i � k. (47)

Induction on i shows that

ai = (−1)i
(

k

i

)
, 1 � i � k, (48)

which completes the proof. �
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As an sl(2, C)-module,

P [n,m] ∼=sl(2,C)

(
n⊕

i=0

M2n−2i[X, Y ]Zi

)
⊗

⎛
⎝ m⊕

j=0

Lm−j [m,m]

⎞
⎠ (49)

∼=sl(2,C)

(
n⊕

i=0

M2n−2i[X, Y ]

)
⊗

⎛
⎝ m⊕

j=0

M2m−2j [X, Y ]

⎞
⎠ , (50)

so that

P [n,m] ∼=sl(2,C)

n⊕
i=0

m⊕
j=0

M2n−2i[X, Y ] ⊗ M2m−2j [X, Y ]. (51)

Each component in the sum of equation (51) may be decomposed by the Clebsch–Gordan
theorem 1:

M2n−2i[X, Y ] ⊗ M2m−2j [X, Y ] ∼=sl(2,C)

k′⊕
k=0

M2(n+m)−2(i+j)−2k[X, Y ], (52)

where

k′ =
{

2(n − m) − 2(i − j) : 2n − 2i � 2m − 2j

2(m − n) − 2(j − i) : 2n − 2i < 2m − 2j.
(53)

Lemma 2. The highest weight vectors of a fixed weight λ in P [n,m] have the form

w =
n∑

i=0

m∑
j=0

aijwij , (54)

where the aij are scalars and wij is the highest weight vector of weight λ in M2n−2i[X, Y ]Zi ⊗
Lm−j [m,m] ∼=sl(2,C) M2n−2i[X, Y ]⊗M2m−2j [X, Y ](if one exists) as described in lemma 1 for
0 � i � n and 0 � j � m.

Proof. Let w be a highest weight vector of P [n,m] of fixed weight λ. Then w is of the form

w =
n∑

i=0

m∑
j=0

∑
k

aijkwijk, (55)

where wijk is a simple tensor of weight λ from M2n−2i[X, Y ]Zi ⊗ Lm−j [m,m] for each k
and the aijk are scalars and not all zero. That is, for fixed i and j , the index k of wijk ranges
over the number of weight vectors of weight λ in M2n−2i[X, Y ]Zi ⊗ Lm−j [m,m]. The simple
tensors wijk and wi ′j ′k′ are linearly independent, as are J+ · wijk and J+ · wi ′j ′k′ (if nonzero) if
(i, j) 	= (i ′, j ′). From this it follows that for fixed i, j ,

wij =
∑

k

aijkwijk, (56)

is a highest weight vector from M2n−2i[X, Y ]Zi ⊗ Lm−j [m,m]. The result now follows from
lemma 1. �

Remark 3. Recall that X2n is a basis element of weight 2n in R[n, n] and fm,2m is a
basis element of weight 2m in L[m,m]. Up to scalar multiple, X2n ⊗ fm,2m is the unique
highest weight vector of weight 2n + 2m in P [n,m]. If P [n,m] were to decompose,

10
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then one component of the decomposition must therefore contain X2n ⊗ fm,2m. That is,
if P [n,m] ∼= W0 ⊕ W1, then X2n ⊗ fm,2m ∈ W0 or X2n ⊗ fm,2m ∈ W1.

The highest weight vector X2n ⊗ fm,2m generates the terminal irrep VT with basis
{X2n−iY i ⊗ f0,0}, for 0 � i � 2n. Note that VT is equivalent to the irrep M2n[X, Y ].
Thus, considering remark 3, we have the following lemma.

Lemma 3. Let VT be the irrep with basis {X2n−iY i ⊗ f0,0}, for 0 � i � 2n. If
P [n,m] ∼= W0 ⊕ W1, then VT ⊆ W0 or VT ⊆ W1.

Lemma 4. Let v be a highest weight vector of P [n,m]; then there exists L ∈ e(3) such that
L · v ∈ VT − {0}.
Proof. First we assume that vij is a highest weight vector of the component M2n−2i[X, Y ]Zi ⊗
Lm−j [m,m] in the sl(2, C)-decomposition of P [n,m] from equation (51). Then, by lemma 1,
vij of weight 2n + 2m − 2i − 2j − 2k for 0 � k � min(2m − 2j, 2n − 2i) is given by a
nonzero scalar multiple of

vij =
k∑

l=0

cij lX
2n−2i−lY lZi ⊗ fm−j,2m−2j−(k−l), (57)

where cijl is a nonzero scalar determined by lemma 1 and equation (36). The exact value of
cijl is not important: for our purposes we only need that it is nonzero. Then,

P i+k
z · vij = P i+k

z · (
cij0X

2n−2iZi ⊗ fm−j,2m−2j−k

)
, (58)

since P i+k
z · (X2n−2i−lY lZi ⊗ fm−j,2m−2j−(k−l)) = 0 for l > 0. Thus,

P
m−j−k
− P i+k

z · vij = (−1)i+m−j−ki!
(j + k)!

j !

m!

(j + k)!
cij0X

2n−iY i ⊗ f0,0,

= (−1)i+m−j−ki!
m!

j !
cij0X

2n−iY i ⊗ f0,0 ∈ VT − {0} (59)

and so P
m−j−k
− P i+k

z · vij ∈ VT − {0}.
We now consider the case of a general highest weight vector v in P [n,m] of weight N,

where 0 � N � 2m + 2n. Lemma 2 implies that v is in the form

v =
∑

λij vij , (60)

where vij is a highest weight vector of M2n−2i[X, Y ]Zi ⊗ Lm−j [m,m] in the decomposition
of P [n,m] of weight N and not all scalars λij = 0. Note that a highest weight vector vij of
weight N may not exist for all i and j .

For each i, j for which vij of weight N exists, we have a non-negative integer kij :

N = 2n − 2i + 2m − 2j − 2kij , (61)

where 0 � kij � min(2m − 2j, 2n − 2i). If there exists a unique maximal i + kij for which
vij exists and λij 	= 0, then equations (59) and (60) imply

P
m−j−k
− P

i+kij

z · v = P
m−j−k
− P

i+kij

z · (λij vij ) ∈ VT − {0}. (62)

Otherwise there exists more than one such pair is, js such that visjs
exists, λis ,js

	= 0 and
i + k ≡ is + kisjs

is maximal.
Consider

P i+k
z · v =

∑
s

λisjs
(−1)is is!

(
js + kisjs

)
!

js!
cisjs0

× X2n−is Y is ⊗ fm−js−kis js ,2m−2js−2kis js
. (63)

11
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Note that if two (or more) simple tensors in equation (63) are linearly dependent (and hence
equal) and indexed with s and t, we have is = it , is + kis ,js

= it + kit ,jt
and js + kisjs

= jt + kit jt
.

It follows that is = it , js = jt and kisjs
= kit jt

so that visjs
= vit jt

. Hence the terms in the sum
of equation (63) are distinct and P i+k

z · v 	= 0.
Let m − j ′ − k′ ≡ m − js ′ − kis′ js′ be maximal among those terms in equation (63) and

consider

P
m−j ′−k′
− P i+k

z · v =
∑
s ′

λis′ js′ (−1)
m−js′ −ki

s′ ,js′ +is′ (is ′ !)
m!

js ′ !
cis′ js′ 0

× X2n−is′ Y is′ ⊗ f0,0. (64)

The element in equation (64) is in VT, and we must show that it is nonzero. Note that if two
(or more) simple tensors in equation (64) are linearly dependent (and hence equal) and indexed
with s ′ and t ′, we have is ′ = it ′ , is ′ +kis′ js′ = it ′ +kit ′ jt ′ and is ′ +js ′ +ki ′s j ′

s
= is ′ +jt ′ +kit ′ jt ′ , with the

last equality a consequence of equation (61). It follows that i ′s = i ′t , j
′
s = j ′

t , and ki ′s j ′
s
= ki ′t j ′

t

so that vi ′s j ′
s
= vi ′t j ′

t
. Thus all simple tensors in equation (64) are linearly independent and in

VT.
Hence,

P
m−j ′−k′
− P i+k

z · v ∈ VT − {0}, (65)

which completes the proof. �

Theorem 2. P [n,m] is indecomposable.

Proof. By way of contradiction, suppose that P [n,m] decomposes with decomposition
P [n,m] ∼= W0 ⊕W1 such that W0 	= 0 and W1 	= 0. Then, VT ⊆ W0 or VT ⊆ W1 by lemma 3.
Without loss of generality, let VT ⊆ W1. Since W0 	= 0 and is an sl(2, C)-module (since it is
an e(3)-module), it must contain a highest weight vector v. By lemma 4, there exists L ∈ e(3)

such that L · v ⊆ VT − {0}; hence L · v ∈ W1 − {0}. Since L · v ∈ W0 − {0}, we have
L · v ∈ W0 ∩ W1 with L · v 	= 0, a contradiction. Thus, it must be the case that P [n,m] is
indecomposable. �

The next proposition establishes that in creating the family of parallelogram
representations we have indeed created a family of representations distinct from the raising
and lowering strings.

Proposition 8. P [n,m] is neither equivalent to a raising nor a lowering string representation.

Proof. The P [n,m] element Zn ⊗ f0,0 generates the subrepresentation R[n, n], while the
element X2n ⊗fm,2m generates the subrepresentation L[m, 2n + m]. Propositions 2 and 6 thus
imply that P [n,m] is neither a raising string nor a lowering string representation. �

A simple consideration of dimensions establishes the following proposition.

Proposition 9.

(a) P [n, n] ∼= P [m,m] if and only if n = m,
(b) P [n,m] ∼= P [n, k] if and only if m = k,
(c) P [n,m] ∼= P [k,m] if and only if n = k.
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Proposition 9 implies that the family of parallelogram representations is infinite. Finally,
we show that the family of parallelogram representations is closed under the dual operation.

Proposition 10. P [n,m]∗ ∼= P [m, n].

Proof. P [n,m]∗ ∼= (R[n, n] ⊗ L[m,m])∗ ∼= R[n, n]∗ ⊗ L[m,m]∗ ∼= L[n, n] ⊗ R[m,m]
∼= R[m,m] ⊗ L[n, n] ∼= P [m, n]. �

5. Concluding remarks

In a subsequent paper, we will construct finite-dimensional, indecomposable representations
of e(m) for m > 3. We will consider cases m = 4,m = 6,m = 2n for n � 4, and m = 2n + 1
for n � 2 separately. The cases correspond to so(m)C being a Lie algebra of type A1 ×A1, A3,
Dn or Bn, respectively. In each case, the indecomposable, finite-dimensional representations
of e(m) will be constructed from finite-dimensional, irreducible representations of so(m)C.
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